Stability and Synchronization for Discrete-Time Complex-Valued Neural Networks with Time-Varying Delays
نویسندگان
چکیده
منابع مشابه
Stability and Synchronization for Discrete-Time Complex-Valued Neural Networks with Time-Varying Delays
In this paper, the synchronization problem for a class of discrete-time complex-valued neural networks with time-varying delays is investigated. Compared with the previous work, the time delay and parameters are assumed to be time-varying. By separating the real part and imaginary part, the discrete-time model of complex-valued neural networks is derived. Moreover, by using the complex-valued L...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملSynchronization for Complex Dynamic Networks with State and Coupling Time-Delays
This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...
متن کاملGlobal Exponential Stability of Discrete-Time Complex-Valued Neural Networks with Time-Varying Delay
Abstract.In this paper, a class of discrete-time complex-valued neural networks with time-varying delays and impulses are considered. Based on M-matrix theory and analytic methods, several simple sufficient conditions checking the global exponential stability are obtained for the considered neural networks. The obtained results show that the stability still remains under certain impulsive pertu...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0093838